IdrisDoc: Prelude.Classes

Prelude.Classes

thenCompare : Ordering -> Lazy Ordering -> Ordering

Compose two comparisons into the lexicographic product

modInt : Int -> Int -> Int
modBigInt : Integer -> Integer -> Integer
modB8 : Bits8 -> Bits8 -> Bits8
modB64 : Bits64 -> Bits64 -> Bits64
modB32 : Bits32 -> Bits32 -> Bits32
modB16 : Bits16 -> Bits16 -> Bits16
intToBool : Int -> Bool
divInt : Int -> Int -> Int
divBigInt : Integer -> Integer -> Integer
divB8 : Bits8 -> Bits8 -> Bits8
divB64 : Bits64 -> Bits64 -> Bits64
divB32 : Bits32 -> Bits32 -> Bits32
divB16 : Bits16 -> Bits16 -> Bits16
default#min : Ord a => a -> a -> a
default#max : Ord a => a -> a -> a
default#>= : Ord a => a -> a -> Bool
default#> : Ord a => a -> a -> Bool
default#== : Eq a => a -> a -> Bool
default#<= : Ord a => a -> a -> Bool
default#< : Ord a => a -> a -> Bool
default#/= : Eq a => a -> a -> Bool
boolOp : (a -> a -> Int) -> a -> a -> Bool
data Ordering : Type
LT : Ordering
EQ : Ordering
GT : Ordering
class Ord 

The Ord class defines comparison operations on ordered data types.

compare : Ord a => a -> a -> Ordering
(<) : Ord a => a -> a -> Bool
Fixity
Left associative, precedence 6
(>) : Ord a => a -> a -> Bool
Fixity
Left associative, precedence 6
(<=) : Ord a => a -> a -> Bool
Fixity
Left associative, precedence 6
(>=) : Ord a => a -> a -> Bool
Fixity
Left associative, precedence 6
max : Ord a => a -> a -> a
min : Ord a => a -> a -> a
class Num 

The Num class defines basic numerical arithmetic.

(+) : Num a => a -> a -> a
Fixity
Left associative, precedence 8
(*) : Num a => a -> a -> a
Fixity
Left associative, precedence 9
fromInteger : Num a => Integer -> a

Conversion from Integer.

class Neg 

The Neg class defines operations on numbers which can be negative.

negate : Neg a => a -> a

The underlying implementation of unary minus. -5 desugars to negate (fromInteger 5).

(-) : Neg a => a -> a -> a
Fixity
Left associative, precedence 8
abs : Neg a => a -> a

Absolute value

class MinBound 
minBound : MinBound b => b

The lower bound for the type

class MaxBound 
maxBound : MaxBound b => b

The upper bound for the type

class Integral 
div : Integral a => a -> a -> a
mod : Integral a => a -> a -> a
class Eq 

The Eq class defines inequality and equality.

(==) : Eq a => a -> a -> Bool
Fixity
Left associative, precedence 5
(/=) : Eq a => a -> a -> Bool
Fixity
Left associative, precedence 5
(/) : Float -> Float -> Float

Fractional division of two Floats.

Fixity
Left associative, precedence 9